MATH 2050C Mathematical Analysis I
2019-20 Term 2
Midterm solution
Q1. (a) (5 points) Using only the field axioms of R (Bartle 2.1.1), prove that
(a+Db)(a+b) = a®+ 2(ab) + b?
for any a, b € R. List which property you have used in each step of your argument.

Solution: We use the notations as in Bartle 2.1.1.

(a+b)(a+b)=ala+Db)+bla+b) (D)
= (a® + ab) + (ba + b?) (D)
= ((a® + ab) + ba) + b? (A2)
= (a® + (ab+ ba)) + b2 (A2)
= (a® + (ab + ab)) + b? (M1)
= a? + (ab + ab) + b* (A2)
= a® + 1(ab) + 1(ab) + b* (M3)
=a®+ (1 +1)(ab) + b (D)

= a? + 2(ab) + b?

(b) (5 points) Prove by mathematical induction that for any n € N, and any positive
real numbers x1,x9, -, x,, we have

(I+z)(+z2) - (L+m) > 1+a1 + 22+ + 2p.

Solution: For n =1, it is trivially true as 1+ 21 = 1+x;. Suppose the statement
is true for n = k. Consider n = k£ + 1, we have from the induction hypothesis that

(I+z)(I+z2) - (L+ap) 2 1+z1 + 224+ 2p
Multiplying by 1 4 x+1, which is positive as x4+ > 0, on both sides, we obtain

(IT+a)d+a)- - (L4 ap) > U+ o +xo+ - 4 2) (1 + 2pp1)
=14z +22+ 4+ Tpp1 + Tpr1 (X1 + 22+ -+ Tk)
>14+x1+x2+ -+ Tpp

where the last inequality holds because z1,x2,- - ,zr+1 > 0. The proof is thus
completed by mathematical induction.

Q2. (10 points) Use the € — K definition of limit to show that

i () =

Solution: Let ¢ > 0. By Archimedean Property, we can choose K € N such that
K > ;%. Then for any n > K, we have
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Q3.

(a)

(5 points) Show that the sequence (x,) of real numbers defined by
1 1 1
o= (1-3) (1-3) (- 3)

Solution: First, notice that for any n € N, we have x,, > 0 and

1
Tpyl = (1 — 2n+1> Ty < Tp.

Therefore, (x,) is a decreasing sequence which is bounded from below by 0. By
Monotone Convergence Theorem , (x,) is a convergent sequence.

is convergent.

(5 points) Suppose (z,) is an increasing sequence of real numbers such that there
exists a subsequence (z,, ) which converges to a € R. Prove that (z,) converges
to a.

Solution: Since any subsequence of an increasing sequence is also increasing, (zy,, )
is an increasing sequence converging to a. By Monotone Convergence Theorem,
we know that a = sup{x,, : k¥ € N}. We first show that {z, : n € N} is bounded
above by a. For any k € N, we have ng > k by the definition of subsequences.
Since (xy,) is increasing, we have

xkéxnkga

where the second inequality holds since a is the supremum, hence an upper bound,
of {zy, : k € N}. Therefore, we have shown that z;, < a for all k € N. As () is an
increasing sequence which is bounded above, it must be convergent by Monotone
Convergence Theorem. Let lim(z,) = b. We want to show that b = a. Since (z,,)
is convergent, any subsequence of (x,) converges to the same limit b. As we know
that the subsequence (z,, ) converges to a, we must have a = b.

(5 points) Use the e — H terminology to state the definition for a sequence of real
numbers (z,) to be NOT Cauchy.

Solution: A sequence (z,,) is NOT Cauchy if there exists some ¢y > 0 such that
for any H € N, there exist some m,n > H such that |z,, — x,| > €.

(5 points) Show that the sequence (z,,) of real numbers defined by

sin2 sin3 sinn

Ty =sinl+ o1 + a0 + o+ o

is convergent.

Solution: We shall show that (z,) is a Cauchy sequence, which must then be
convergent by Cauchy criteria. Let € > 0. Choose H € N such that H > 1+|log; €.
Then for any m,n > H, say m > n, we have

sin(n+1) in(n+2)

|em — @al = 55T + r +o T
| sin(n+1)| | sin(n+2)| | sin m|
=< (1! +1 =) a +
S G T G T T
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Q5.

Q6.

where we have used Triangle inequality and the fact that |sinz| < 1 for any = € R.
Since 271 < 7! for all r € R, we have

1 1 1 1
2nﬁ++ < < < €.

1
’mm_xn‘§27+

(10 points) Use limit theorems to find the limit

. 23 —3x 42
lim ———
r—1 .’1}4 —4x =+ 3
and then use the € — §-definition of limit to justify your answer.
Solution: First, notice that

?—-3z+2 (-1} =z+2)  x+2
vd—dr+3  (x—1)2(2+20+3) 22+4+2x+3

As limg 1 (z + 2) = 3 and lim,_.1(2® + 22 + 3) = 6 # 0, using limit theorems, we

conclude that
2 —3x+2  limgg(z+2) 3 1

li - .
szt — 4z +3  limp (a2 +20+3) 6 2

Next, we prove lim,_,1 ii:ﬁig = % using the € — § definition of limit. Let € > 0. First

notice that whenever 0 < |x — 1] < 1, we have
lz4+1]=2+1<3 and |z?+22+3|>3.
Therefore, if we choose § = min{2¢, 1} > 0, then whenever 0 < |z — 1| < §, we have

2 —3x+2 1

4 +3 2

—x2 41 ‘ |z + 1

1
’ ‘2(x2—|—2x+3) T I L

(10 points) Let (z,) be a bounded sequence of real numbers. Define a new sequence
(yn) where
yn = inf{zy : k>n}.

Define y := sup{y, : n € N}. Prove that there exists a subsequence (x, ) of (xy) such
that lim(x,, ) = v.

Solution: First, (y,) is a bounded sequence since (z;,) is bounded. Moreover, for any
n €N,
yp:=inf{zy : k>n} <inf{zp : E>n+1} = ypi1.

So (yn) is a bounded increasing sequence. By Monotone Convergence Theorem, (y,)
converges to y.

We now construct the subsequence (z,) inductively. By the definition of infimum,
there exists some n; > 1 such that

Y1 < xpy, <y1+ 1.



Qr.

After nq is chosen, we choose ny > nq + 1 such that

1
Yni1+1 S Lng < Yni+1 + 5

Proceeding inductively, we then have n; < ny < --- and a subsequence (z,) of (zy)
such that

Ynp+1 S xnk+1 < Ynp+1 + m

for all k£ € N. Take k — oo and by Squeeze Theorem , we have lim(z,, ) = lim(y,) = y.

(10 points) Let (z,,) be a sequence of positive real numbers satisfying the following:
Tmtn < T + 2, for any m,n € N.

Prove that the sequence (%) is convergent.

Solution: We shall show that lim(%2) = ¢ where

n
n

E::inf{%:neN}ZO.

Let € > 0. By the definition of infimum, there exists some ¢ € N such that

By division algorithm, for any n € N, there exists integers p > 0 and 0 < r < ¢ such
that n = pg + r. Set x¢ := 0. By assumption, we have

Ty = Tpgir < Tpg + Tp < prg + T
Dividing by n, we obtain

(< T pTa T _PATg | T

n n o n ngqg n
Obverse that
n—r r
Pa_ —1-l <,
n n n
Let M := max{z1,x2, -+ ,z4-1}. If we choose K € N such that K > %, then for all

n > K, we have
M
eg@§ﬁ+—<<£+f)+5:£+e.

n q n 2 2

—END OF MIDTERM—



