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Midterm solution

Q1. (a) (5 points) Using only the field axioms of R (Bartle 2.1.1), prove that

(a+ b)(a+ b) = a2 + 2(ab) + b2

for any a, b ∈ R. List which property you have used in each step of your argument.

Solution: We use the notations as in Bartle 2.1.1.

(a+ b)(a+ b) = a(a+ b) + b(a+ b) (D)
= (a2 + ab) + (ba+ b2) (D)
= ((a2 + ab) + ba) + b2 (A2)
= (a2 + (ab+ ba)) + b2 (A2)
= (a2 + (ab+ ab)) + b2 (M1)
= a2 + (ab+ ab) + b2 (A2)
= a2 + 1(ab) + 1(ab) + b2 (M3)
= a2 + (1 + 1)(ab) + b2 (D)
= a2 + 2(ab) + b2

(b) (5 points) Prove by mathematical induction that for any n ∈ N, and any positive
real numbers x1, x2, · · · , xn, we have

(1 + x1)(1 + x2) · · · (1 + xn) ≥ 1 + x1 + x2 + · · ·+ xn.

Solution: For n = 1, it is trivially true as 1+x1 = 1+x1. Suppose the statement
is true for n = k. Consider n = k+ 1, we have from the induction hypothesis that

(1 + x1)(1 + x2) · · · (1 + xk) ≥ 1 + x1 + x2 + · · ·+ xk.

Multiplying by 1 + xk+1, which is positive as xk+1 > 0, on both sides, we obtain

(1 + x1)(1 + x2) · · · (1 + xk+1) ≥ (1 + x1 + x2 + · · ·+ xk)(1 + xk+1)
= 1 + x1 + x2 + · · ·+ xk+1 + xk+1(x1 + x2 + · · ·+ xk)
> 1 + x1 + x2 + · · ·+ xk+1

where the last inequality holds because x1, x2, · · · , xk+1 > 0. The proof is thus
completed by mathematical induction.

Q2. (10 points) Use the ε−K definition of limit to show that

lim

(√
n− 1√
n+ 1

)
= 1.

Solution: Let ε > 0. By Archimedean Property, we can choose K ∈ N such that
K > 4

ε2
. Then for any n ≥ K, we have∣∣∣∣√n− 1√

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣ −2√
n+ 1

∣∣∣∣ ≤ 2√
n
≤ 2√

K
< ε.



Q3. (a) (5 points) Show that the sequence (xn) of real numbers defined by

xn :=

(
1− 1

2

)(
1− 1

4

)
· · ·
(

1− 1

2n

)
is convergent.

Solution: First, notice that for any n ∈ N, we have xn > 0 and

xn+1 =

(
1− 1

2n+1

)
xn < xn.

Therefore, (xn) is a decreasing sequence which is bounded from below by 0. By
Monotone Convergence Theorem , (xn) is a convergent sequence.

(b) (5 points) Suppose (xn) is an increasing sequence of real numbers such that there
exists a subsequence (xnk

) which converges to a ∈ R. Prove that (xn) converges
to a.

Solution: Since any subsequence of an increasing sequence is also increasing, (xnk
)

is an increasing sequence converging to a. By Monotone Convergence Theorem,
we know that a = sup{xnk

: k ∈ N}. We first show that {xn : n ∈ N} is bounded
above by a. For any k ∈ N, we have nk ≥ k by the definition of subsequences.
Since (xn) is increasing, we have

xk ≤ xnk
≤ a

where the second inequality holds since a is the supremum, hence an upper bound,
of {xnk

: k ∈ N}. Therefore, we have shown that xk ≤ a for all k ∈ N. As (xn) is an
increasing sequence which is bounded above, it must be convergent by Monotone
Convergence Theorem. Let lim(xn) = b. We want to show that b = a. Since (xn)
is convergent, any subsequence of (xn) converges to the same limit b. As we know
that the subsequence (xnk

) converges to a, we must have a = b.

Q4. (a) (5 points) Use the ε−H terminology to state the definition for a sequence of real
numbers (xn) to be NOT Cauchy.

Solution: A sequence (xn) is NOT Cauchy if there exists some ε0 > 0 such that
for any H ∈ N, there exist some m,n ≥ H such that |xm − xn| ≥ ε0.

(b) (5 points) Show that the sequence (xn) of real numbers defined by

xn := sin 1 +
sin 2

2!
+

sin 3

3!
+ · · ·+ sinn

n!

is convergent.

Solution: We shall show that (xn) is a Cauchy sequence, which must then be
convergent by Cauchy criteria. Let ε > 0. ChooseH ∈ N such thatH > 1+| log2 ε|.
Then for any m,n ≥ H, say m > n, we have

|xm − xn| =
∣∣∣ sin(n+1)

(n+1)! + sin(n+2)
(n+2)! + · · ·+ sinm

m!

∣∣∣
≤ | sin(n+1)|

(n+1)! + | sin(n+2)|
(n+2)! + · · ·+ | sinm|

m!

≤ 1
(n+1)! + 1

(n+2)! + · · ·+ 1
m!
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where we have used Triangle inequality and the fact that | sinx| ≤ 1 for any x ∈ R.
Since 2r−1 ≤ r! for all r ∈ R, we have

|xm − xn| ≤
1

2n
+

1

2n+1
+ · · ·+ 1

2m−1
<

1

2n−1
≤ 1

2H−1
< ε.

Q5. (10 points) Use limit theorems to find the limit

lim
x→1

x3 − 3x+ 2

x4 − 4x+ 3

and then use the ε− δ-definition of limit to justify your answer.

Solution: First, notice that

x3 − 3x+ 2

x4 − 4x+ 3
=

(x− 1)2(x+ 2)

(x− 1)2(x2 + 2x+ 3)
=

x+ 2

x2 + 2x+ 3
.

As limx→1(x + 2) = 3 and limx→1(x
2 + 2x + 3) = 6 6= 0, using limit theorems, we

conclude that

lim
x→1

x3 − 3x+ 2

x4 − 4x+ 3
=

limx→1(x+ 2)

limx→1(x2 + 2x+ 3)
=

3

6
=

1

2
.

Next, we prove limx→1
x3−3x+2
x4−4x+3

= 1
2 using the ε− δ definition of limit. Let ε > 0. First

notice that whenever 0 < |x− 1| < 1, we have

|x+ 1| = x+ 1 < 3 and |x2 + 2x+ 3| > 3.

Therefore, if we choose δ = min{2ε, 1} > 0, then whenever 0 < |x− 1| < δ, we have∣∣∣∣x3 − 3x+ 2

x4 − 4x+ 3
− 1

2

∣∣∣∣ =

∣∣∣∣ −x2 + 1

2(x2 + 2x+ 3)

∣∣∣∣ =
|x+ 1|

2|x2 + 2x+ 3|
|x− 1| < 1

2
δ ≤ ε.

Q6. (10 points) Let (xn) be a bounded sequence of real numbers. Define a new sequence
(yn) where

yn := inf{xk : k ≥ n}.

Define y := sup{yn : n ∈ N}. Prove that there exists a subsequence (xnk
) of (xn) such

that lim(xnk
) = y.

Solution: First, (yn) is a bounded sequence since (xn) is bounded. Moreover, for any
n ∈ N,

yn := inf{xk : k ≥ n} ≤ inf{xk : k ≥ n+ 1} =: yn+1.

So (yn) is a bounded increasing sequence. By Monotone Convergence Theorem, (yn)
converges to y.

We now construct the subsequence (xnk
) inductively. By the definition of infimum,

there exists some n1 ≥ 1 such that

y1 ≤ xn1 < y1 + 1.
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After n1 is chosen, we choose n2 ≥ n1 + 1 such that

yn1+1 ≤ xn2 < yn1+1 +
1

2
.

Proceeding inductively, we then have n1 < n2 < · · · and a subsequence (xnk
) of (xn)

such that

ynk+1 ≤ xnk+1
< ynk+1 +

1

k + 1

for all k ∈ N. Take k →∞ and by Squeeze Theorem , we have lim(xnk
) = lim(yn) = y.

Q7. (10 points) Let (xn) be a sequence of positive real numbers satisfying the following:

xm+n ≤ xm + xn for any m,n ∈ N.

Prove that the sequence (xnn ) is convergent.

Solution: We shall show that lim(xnn ) = ` where

` := inf
{xn
n

: n ∈ N
}
≥ 0.

Let ε > 0. By the definition of infimum, there exists some q ∈ N such that

xq
q
< `+

ε

2
.

By division algorithm, for any n ∈ N, there exists integers p ≥ 0 and 0 ≤ r < q such
that n = pq + r. Set x0 := 0. By assumption, we have

xn = xpq+r ≤ xpq + xr ≤ pxq + xr.

Dividing by n, we obtain

` ≤ xn
n
≤ pxq

n
+
xr
n

=
pq

n

xq
q

+
xr
n
.

Obverse that
pq

n
=
n− r
n

= 1− r

n
≤ 1.

Let M := max{x1, x2, · · · , xq−1}. If we choose K ∈ N such that K > 2M
ε , then for all

n ≥ K, we have

` ≤ xn
n
≤ xq

q
+
M

n
<
(
`+

ε

2

)
+
ε

2
= `+ ε.

—END OF MIDTERM—
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